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Abstract. The ubiquitous nature of infrastructure networks in today’s 

society makes them a particularly important focus of preparedness 

planning, as their operation is essential for the many socioeconomic 

functions that rely upon them. Apart from that, many global disasters have 

prompted the need to study and plan for resilience. Despite previous work, 

which focus on after disruption partially, the work proposed here provides 

an initial multi-objective mathematical programming formulation based on 

reliability, vulnerability, and recoverability of the system to strengthen 

network resilience by emphasizing vulnerability and recoverability. The 

trade-off of investments made in both mitigation (vulnerability) and 

contingency (recoverability). Experimental results for both deterministic and 

stochastic conditions are presented, demonstrating the effectiveness and 

efficiency of the proposed model. 

 

1 INTRODUCTION 

The ubiquitous nature of infrastructure networks in today’s society makes them a particularly 

important focus of preparedness planning, as their operation is essential for the many socioeconomic 

functions that rely upon them. No longer is it sufficient to focus on “prevention and protection” from 

the inevitability of disruptive events, potentially large-scale in nature. Recent natural disasters (e.g., 

hurricanes, earthquakes) have demonstrated an ability to overwhelm infrastructure networks 

regardless of the levels of prevention and protection. According the US National Academies of Science 

[2012], “One way to reduce the impacts of disasters on the nation and its communities is to invest in 

enhancing resilience […].” 

The US government, through several agencies including the Department of Homeland Security (DHS), 

has increasingly emphasized resilience planning for critical infrastructure. Presidential Policy Directive 

21 [Obama 2013] states that critical infrastructure “must be secure and able to withstand and rapidly 

recover from all hazards,” where the combination of “withstanding” and “recovering” from disruptions 

constitutes resilience. Resilience has increasingly been seen in the literature [Hosseini et al. 2015, Park 

et al. 2013, Zolli and Healy 2012]. Ramirez-Marquez and co-authors offer a paradigm for system 



performance following a disruption, shown in Figure 1 [Henry and Ramirez-Marquez 2012, Barker et al. 

2013, Pant et al. 2014, Baroud et al. 2014]. Network performance is quantified by a general 

performance measure ���� (e.g., traffic flow or delay for a highway network). System resilience at time 

t is exhibited after a disruption, ��, which affects the original system state. Based on this description, 

system resilience has been defined as a time-dependent and disruption-specific ratio Recovery��� Loss����⁄ .  

 

Figure 1. System performance across system states.  

 

Figure 1 highlights two primary dimensions that resilient systems exhibit after a disruptive event: 

vulnerability, or an inability to maintain a desired performance level after a disruption, and 

recoverability, or an ability to recover timely. This paper addresses a multi-objective mathematical 

model for resilient networks which simultaneously considers (i) network vulnerability by reducing the 

impact initially experienced after a disruption, and (ii) network recoverability by finding the most 

effective ordering of the restoration of disrupted links.  

The aim of this paper is to introduce an initial multiobjective mathematical model which (i) considers 

the proportional disruption in links, (ii) minimizes the vulnerability of network by assigning resources in 

presence of disaster, (iii) minimize the cost of unsatisfied demand (e.g. in transportation networks, the 

amount of traffic unable to reach a destination, or in electric power networks, the amount of electricity 

unable to be delivered from supplier nodes to customer nodes), (iv) minimizes the time of recovery by 

finding the best order of link to be recovered, (v) balances between the investments on vulnerability 

reduction and recoverability enhancement, and (vi) accounts for uncertainty in parameters of the 

formulation with stochastic optimization methods.  

2 BRIEF BACKGROUND 

Among the recent literature regarding network disruption and restoration, Lee and Wallace (2007) 

consider the importance of interdependent infrastructures, an example of five infrastructure such as 

communication, transportation, and power grids, in a network flow and represent a mathematical 

model to guide the system to restore after a disaster. The first attempts of resource selection and 

allocation to disrupted links in a network were made by Nurre et al. (2012), who develop a recovery 



process that determines which disrupted links to return to the problem, then optimally schedules their 

restoration based on the availability of work crews. Gong et al. [2013] study an interdependent supply 

chain network which integrates several underlying infrastructure networks (e.g., the power grid, 

communication, transportation), optimizing the cost of restoration and the performance of the multi-

layer network. Shen [2013] develops a stochastic mixed integer model of the recovery of 

interdependent infrastructures under severe disruption. Baroud et al. [2014] develops a stochastic 

ordinal ranking approach to restoration of inland waterway networks based on two resilience-based 

importance measures from Barker et al. [2013].  

3 PROBLEM DEFINITION AND STOCHASTIC OPTIMIZATION FORMULATION 

The problem addresses a network ���, ��	consisting of a set of nodes � and a set of links �. This 

network includes three categories of nodes: ��� is the set of source nodes, ��� is the set of sink nodes, 

and �� is the set of transmission nodes. The set � contains different disruptive scenarios that can affect 

the network, each of which reduces the operability of links by some percentage. In the event of a 

disruption, the network is serviced by a supplier of �� types of resources (e.g., some work crews have 

specific equipment, some crews have a certain number of works). The rate of recovery per unit of time 

is �. It is assumed that the rate of recovery for all links is equal, but the order in which a disrupted link 

is recovered affects the total restoration time of the network. The problem is described when a 

scenario disaster of type � ∈ �,	 occurs, and it disrupts the links proportionally from 0% to 100%. We 

must assign resources to disrupted links to lessen the percent of disruption. Then, the disrupted link 

are scheduled to be recovered one by one, and the order of recovery influences the total time of 

recovery.   

Indices: 

!, " Indices of nodes in the network, !, "#� = %1,… , �(, 	� = ��� ∪��� ∪��, ��� = %1,… , ���(,�� = %��� + 1,… , ��(,�� = %�� + 1,… , ���(	 + Index of resources available to be allocated to the disrupted links, +#, = %1,… , ��( � Set of scenario disasters which effect on network performance	�#� = %1,… , �-( . Index of the order in which a link is recovered, .#%1,… , ��(  / Index of stochastic scenarios, /#	Ω = %1,… , �1( 
 

Parameters: 

�� The number of disrupted links  2��- The proportional damage to link �!, "� when disaster type � happens 3���- This is a factor whereby the vulnerability of link �!, "� is reduced when resource + is 

assigned to the link in the presence of disaster scenario type �  42�� The nominal capacity of  link �!, "� 5.��� Cost of allocating resource + to �!, "�  56� Cost of buying resource +  57��-8 The cost of performance reduction in link �!, "� after disaster under scenario � occurs in 

scenario	/ ℎ���8 The impact rate of  link �!, "� recovery on network recovery when the link is recovered in 

the .�ℎ order 5:���8 The cost of recovery link �!, "� in order .�ℎ in scenario	/ �;�-8 The penalty cost for supply production loss in the presence of disaster scenario � and 



under stochastic scenario	/ ���-8 The penalty cost for demand loss in the presence of disaster scenario � and under 

stochastic scenario	/ <�8 The aggregation number of resource of type + in scenario	/  � The flow recovery per time unit in scenario	/  = The time horizon for network recovery in scenario	/  > The total available budget in scenario	/ ;� The expected value of suppliers production at nodes !#��� ��  The demand expected to be satisfied at nodes !#��� ?8 The probability of stochastic scenario /  

 

Variables: 

@���8 A1 if	resource	+	is	allocated	to	link	�!. "�	in	scenario	/0 otherwise  O���8 A1 if		link	�!, "�	is	recovered	in	the	.th	order	in	scenario	/0 otherwise  P�8 A1 if	we	use	resource	+	for	reducing	vulnerability	in	scenario	/0 otherwise  4��-�8 The flow between �!, "� during disaster type � with resource + assigned for scenario /  S�-8 The slack variable related to supply node ! during disaster � under scenario	/ T�-8 The slack variable related to demand node ! during disaster � under scenario	/ 

  

Based on the above notation, we formulate the multiobjective problem, which balances vulnerability 

and recoverability, as follows. The first objective function, provided in Eq. (1), minimizes aspects of 

vulnerability by minimizing (i) the percentage of performance decrease after the disruption, (ii) the cost 

of contracting with resource suppliers, (iii) the cost of assigning a resource to a link, (iv) the cost related 

to the time when a supplier produces the level of  services or the amount commodities which is less 

than the expected level of services or amount of commodities because of the disaster (the shortage in 

the amount of commodities or the level of the services a supplier provides), and (v) the cost of unmet 

demand in the network.  

min	VVVVV?857��-82��-3���-@���84��-�8�∈W-∈X�∈Y�∈Y8∈1 +VV?856�P�8�∈W8∈1 −VVVV?85.���@���8�∈W�∈Y�∈Y8∈1+VVV?8�;�-8�;� − S�-8��∈Y-∈X8∈1 +VVV?8���-8��� −T�-8��∈Y-∈X8∈1+VVVVVV?85:���8[2��-83���8\@���84��8�∈]-∈X�∈W�∈Y�∈Y8∈1  

(1) 

 

The second objective function, provided in Eq. (2), maximizes the enhancement in recovery time for 

link �!, "� recovered in the .�ℎ order.  

max	VVVVVV�?8ℎ���8�1 − 2��_83���8�@���84��-�8�� O���8�∈W-∈X�∈]�∈Y�∈Y8∈1  (2) 

 

Constraint (3) ensures that a resource must be assigned to a link that is vulnerable to a disruption and 

potentially becomes disrupted when a disruptive event occurs. Constraint (4) matches repaired links 



with the appropriate number of resources, and Constraint (5) ensures that only disrupted nodes are 

repaired. Constraint (6) shows the resource usage limitation. 

V@���8 ≥ 2��-8�∈W  ∀!, " ∈ �, ∀� ∈ �, ∀/ ∈ Ω (3) 

 

VV@���8�∈Y�∈Y ≥ P�8 ∀+ ∈ ,, ∀/ ∈ Ω (4) 

 

VP�8�∈W ≥ 2��-8  ∀!, " ∈ �, ∀� ∈ �, ∀/ ∈ Ω (5) 

 

VV@���8�∈Y�∈Y ≤ <�8 	∀+ ∈ ,, ∀/ ∈ Ω (6) 

 

Constraints (7)-(9) calculate the amount of commodities and services that suppliers provide and target 

demands, as well as make sure that transmission nodes do not increase or decrease the amount of 

flow. 

V�1− 2��-83���-8�@���84��-�8�∈Y −V�1 − 2��-83���-8�@���84��-�8�∈Y = S�-�8										 
               	∀! ∈ ���, ∀+ ∈ ,, ∀� ∈ �, ∀/ ∈ Ω 

(7) 

 V�1− 2��-83���-8�@���84��-�8�∈Y −V�1 − 2��-83���-8�@���84��-�8�∈Y = T�-�8		 
               ∀! ∈ ��� , ∀+ ∈ ,, ∀� ∈ �, ∀/ ∈ Ω 

(8) 

 V�1− 2��-83���-8�@���84��-�8�∈Y −V�1 − 2��-83���-8�@���84��-�8�∈Y = 0										 
               ∀! ∈ �� , ∀+ ∈ ,, ∀� ∈ �, ∀/ ∈ Ω 

(9) 

 

Constraints (10) and (11) represent supply and demand capacity limitations, respectively. 

S�-�8 ≤ ;�8	 ∀! ∈ ���, ∀+ ∈ ,, ∀� ∈ �, ∀/ ∈ Ω (10) 

 T�-�8 ≤ ��8					 ∀! ∈ ��� , ∀+ ∈ ,, ∀� ∈ �, ∀/ ∈ Ω (11) 

 

Constraint (12) requires that if link (i,j) is disrupted, at least one resource should be assign to it to 

reduce its vulnerability. Constraints (13) if an edge is disrupted by a disaster it should be recovered 

O���8 ≤V@���8�∈W  ∀�!, "� ∈ �, ∀+ ∈ ,, . ∈ c, ∀/ ∈ Ω (12) 

 



VO���8 = 1�∈]  ∀�!, "� ∈ �, ∀+ ∈ ,, ∀/ ∈ Ω (13) 

 

Constraint (14) confirms flow capacity, constraint (15) represents the limitation on the recovery time 

horizon, and constraint (16) represents the limitation on the budget. 

4���-8 ≤ 42��8  ∀�!, "� ∈ �, ∀+ ∈ ,, . ∈ c, ∀/ ∈ Ω (14) 

 

max�de fVVVVg[2��-_83���8\@���84��-_�8 �h iO���8-∈X�∈W�∈Y�∈Y j +⋯
+max�dl fVVVVg[2��-_83���8\@���84��-_�8 �h iO���8-∈X�∈W�∈Y�∈Y j ≤ = 

∀/ ∈ Ω (15) 

 

VVV5.���8@���8�∈W�∈Y�∈Y +VVV5:���8O���8 ≤ =�∈]�∈Y�∈Y 	 ∀/ ∈ Ω (16) 

@���8 , O���8 , P�8#%0,1(  4��-�8 , S�-8,T�-8 ≥ 0 
∀�!, "� ∈ �, ∀+ ∈ ,, . ∈ c, ∀/ ∈ Ω (17) 

 

4 COMPUTATIONAL RESULTS 

To develop stochastic optimization in the model, in vulnerability section, the cost of performance 

reduction in each link, the penalty costs, and the number of available resources are considered as 

uncertain parameters, and in the recovery section, the recovery cost and the rate of performance 

efficiency, when links are recovered in scheduled pattern, are considered as uncertain parameters. In 

order to model the problem under uncertainty the stochastic scenario based optimization is used in 

this paper. Let Ω be the set of all possible scenario and / is a particular scenario. If ?8 denotes the 

probability of scenario/, because / is a finite number (number of scenario is four,/ ∈ %1,2,3,4() the 

expected value function becomes a summation on	/. We consider four scenarios / ∈ %1,2,3,4( which 

randomly are chosen to have a specific probability of occurrence. Each scenario has a determined set of 

parameters which lead to specified set of output for the model [Pishvaee et al. 2008]. 

Increasing the total number of scenarios can lead to a significant increase in the computation time [El-

seyed et al. 2010]. Consequently, to limit the number of scenarios, a fuzzy clustering-based method 

presented by Pishvaee et al. [2008] was used to obtain a reasonable number of scenarios, in this case 

four scenarios, for a test problem shown in Table 1.  

Table 1. The range of parameters for four different scenarios. 

Scenario 

(/) 

Scenario 

probability 

(?8) 

57��-8 ℎ���8 5:���8 �;�-8 ���-8 

1 0.4 ~Unif[10,100] ~Unif[1,2] ~Unif[250,370] ~Unif[100,120] ~Unif[110,190] 
2 0.3 ~Unif[50,111] ~Unif[1.5,1.5] ~Unif[200,390] ~Unif[100,120] ~Unif[150,190] 
3 0.2 ~Unif[25,150] ~Unif[1,1.8] ~Unif[150,450] ~Unif[100,120] ~Unif[130,200] 



4 0.1 ~Unif[30,80] ~Unif[1.1,1.7] ~Unif[300,570] ~Unif[100,120] ~Unif[110,155] 
 

For comparing the deterministic and the stochastic one is used as the nominal data for the 

deterministic model. Table 2 shows the experimental results of solving both deterministic and 

stochastic models and, moreover, depicts the reality that the stochastic objective function is more than 

that the deterministic objective function as the result of considering worst case situations, and the 

higher level of complexity as the result of having  more constraints and decision variable having one 

more dimension. 

Table 2. Computational result under nominal data. 

Objective function Optimal value of objective 

function 

 Number of variables  Number of constraints 

 Deterministic Stochastic  Deterministic Stochastic  Deterministic Stochastic 

Vulnerability(Obj.1) 

2889593 10543970  

240 957 

 

357 1428 

2892070 10548584 

2897416 10573195 

Recovery(Obj.2) 

8692506 29221055   

4346253 14610528 

869250 2922106 

  

Figures 2 and 3 depict the Pareto optimal solution for both deterministic and stochastic models, 

respectively. As it is seen in Figure 3, the value of the vulnerability and recovery objectives have higher 

values than the objective functions for the deterministic model, suggesting that under different 

scenario with different probabilities, provides the model with the robustness whereby the model can 

tolerate abrupt changes in the parameters.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Pareto optimal solution for deterministic model. 
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Figure 3. The Pareto-optimal solution for stochastic model.  

5 CONCLUSIONS 

This work provides a first step in developing an optimization framework for resource allocation to 

enhance network resilience wherein vulnerability and recoverability are treated as competing 

objectives. We offer a stochastic approach considering the parameter, which are inconstant in the real 

world, and make them flow easily in the distribution they follow instead of considering them as unique 

parameters. The results, both for deterministic and stochastic, depict the contradiction between two 

objective functions and furthermore, the higher results produced by the stochastic model and its ability 

to produce output under different scenarios shows the robustness of the stochastic model under the 

uncertain situation. Future work includes a more detailed analysis of multiple scenarios, as well as a 

data-driven study of real infrastructure network disruptions.   
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