Challenges in designing resilient socio-technical systems

A case study of decision-making in railway tunnel projects

Alexander Cedergren
Lund University, Sweden

Lund University Centre for Risk Assessment and Management (LUCRAM)
Introduction

“It appears that everything (organizations, cities, nations) and everybody (from schoolteachers to the U.S. president) can and should be resilient”

(Boin, Comfort, & Demchak, 2010)

• National strategy for protection of societal functions
• Increase resilience of society and its critical infrastructures
• Aim of this case study to analyse:
 o To what extent resilience is considered during design of railway tunnel projects
 o Applicability of a RE perspective
Method and material

- 16 semi-structured interviews
- The design stage of railway tunnel projects
- Decision-making regarding safety measures

- 6 railway tunnel projects
- Including 28 tunnels
- Tunnel lengths between 180m and 8,6km
- Document studies
A Resilience Engineering perspective

• Four factors have provided the basis for analysis
• Influential for a system’s resilience
• Builds upon insights from vulnerabilities in decision-making (Woods, 2003) and includes:
 – Failure to revise assessments
 – Breakdowns at the boundaries of organizational units
 – Past success as a reason for confidence
 – Fragmented problem solving
• Formed the perspective from which decision-making has been studied (cf. Hale & Heijer, 2006)
Decision-making in railway tunnel projects

- Two main groups of stakeholders
- Building permit required
- Different legislations, goals, perspectives

Diagram:

- Project team
 - Transport Administration
 - Consultants

- Municipal actors
 - Building committee
 - Rescue service

- Building permit

Legislations flow to:
- Project team
 - From Transport Administration
 - From Consultants

Legislations flow to:
- Municipal actors
 - From Building committee
 - From Rescue service

Building permit flows to:
- Project team
 - To Municipal actors
A Resilience Engineering perspective

- Failure to revise assessments
- Breakdowns at the boundaries of organizational units
- Past success as a reason for confidence
- Fragmented problem solving
Failure to revise assessments

- Different legislations
- Diverse perspectives on risk and safety;
 - risk-based
 - deterministic
- Stakeholders unable to revise assessments
- Disagreements regarding legitimate “evidence”

Diagram:
- **Project team**
 - Transport Administration
 - Consultants
- **Municipal actors**
 - Building committee
 - Rescue service

Connections:
- Legislations to Project team
- Legislations to Municipal actors
- Building permit
A Resilience Engineering perspective

- Failure to revise assessments
- Breakdowns at the boundaries of organizational units
- Past success as a reason for confidence
- Fragmented problem solving
Breakdowns at the boundaries of organizational units

- Additional demands on safety measures
- “The municipal authorities kidnapped the building permit”

Double binds:
- Costs
- Blame
A Resilience Engineering perspective

- Failure to revise assessments
- Breakdowns at the boundaries of organizational units
- Past success as a reason for confidence
- Fragmented problem solving
Past success as a reason for confidence

- Deadlocks during decision-making
- Adopting the same solutions as in previous projects
- "Precedents"
- Not primarily based on analyses

“If we propose 500 meters, then the rescue service feel confident... and then we know that this will be approved,...

... although it is not a distance that has resulted from an analysis... so you start to wonder why we are doing these analyses...”

(project team in project Å)
A Resilience Engineering perspective

- Failure to revise assessments
- Breakdowns at the boundaries of organizational units
- Past success as a reason for confidence
- Fragmented problem solving
Fragmented problem solving

• Municipal actors influential on decision-making
• Projects of national interest managed locally
• System boundaries

• Flexibility and adaptability in the face of disturbances not considered
• Limited consideration of the system’s resilience
Conclusions

• Resilience gained limited attention
• The processes behind this include:
 – Diverse perspectives
 – Double binds (costs, blame)
 – Choice of system boundaries
• Efforts to make the system safe from a local perspective
• Not resilient from a regional or national perspective
• Micro-level decisions with macro-level effects
• Cross-organisational aspects should be further emphasised
Thank you!

Questions and comments?

alexander.cedergren@lucram.lu.se