
The Quantification of Resilience:

Learning Environments and Managing Risk

Romney B. Duffey
Atomic Energy of Canada Limited, Chalk River, ON K0J 1J0, Canada

duffeyr@aecl.ca

Abstract.  We  define  and  quantify  the  abstract  concept  of  Resilience 
Engineering  (RE).  The  Hollnagel’s  definition  of  resilience  is  some 
intrinsic  ability  of  an organization  to maintain  or  regain  a  dynamically 
stable  state  when  responding  to  upset  and  stress.  We  propose  and 
demonstrate  a  formal  quantification  of  “resilience”  and  organizational 
stability  based precisely  on,  and linking  RE directly  to the “established 
risk management approaches (that) are based on hindsight and emphasise 
error tabulation and calculation of failure probabilities… to anticipate the 
changing shape of risk before damage occurs”.

Our new concepts  are consistent  with Ilya Prigogine’s  theory  of  how a 
non-equilibrium and statistically fluctuating system can evolve towards an 
ordered  state  in  the  physical  world;  and  with  Rudolph  Giuliani’s 
leadership  principle  of   “relentless  preparation”  in  dealing  with  the 
unexpected in organizations. We quantify the objective measures of safety 
using the very uncertainty and complexity of what has already happened 
and  been observed,  and determine  the probability  of  present  and  future 
occurrences  as  learning  occurs.  The  new  organizational  risk  stability 
criterion  that  quantifies  resilience  thus  emerges  naturally,  and  can  be 
compared to actual data. 

The emergence of order from disorder characterizes risk management and 
organizational  stability,  and  hence  system  resilience,  as  a  result  of 
learning.

1 MANAGING THE RISK OF THE UNKNOWN

Our previous work has established the existence or universal learning trends at both the 
system and individual level, and has demonstrated and validated that approach using all 
the available and relevant data (Duffey and Saull, 2002, 2008).

We quantify here the intrinsic and learned stability arising from those many instances in 
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life, where both managing and taking risks requires planning for unknown disasters and 
outcomes, including events such as terrorist attacks, explosions and fires (Giuliani and 
Kurson,  2002; BP, 2005, 2007; and Barthelemy,  2001. We must understand  and take 
into account both what we know and what we do not know about the risk.  We must 
expect  the unexpected,  and anticipate  the unanticipated,  and be able to respond.  This 
dilemma is crystallized in decision theory and analysis,  when we must determine  our 
response, decisions and actions based on both what we do and do not expect to happen. 
The need to counter the actions of terrorists and extremists is one recent example of risk 
caused by the unknown and of extreme organizational  stress.  After the attacks on the 
World  Trade  Center,  Mayor  Rudolph  Giuliani  of  New  York  made  it  clear  that 
collectively  they  did  not  expect  to  be  attacked  in  that  way:  it  was  an  unknown and 
unanticipated  outcome.  But  because  of  what  Guiliani  characterizes  as  “relentless 
preparation”  the  emergency  services  (fire,  police,  ambulance,  security,  treatment, 
transport etc.,) with the direction of the Mayor were able to stitch together an effective 
emergency  response  and  command  structure  from  the  remnants  or  pieces  of  prior 
anticipated (or known) events, capabilities, planning, exercises and knowledge. 

Such  ability  to  cope  and  provide  order  out  of  chaos  also  at  the  heart  of  remaining 
“organizationally  stable”  against  unexpected  and  large  stress  and  unexpected 
occurrences. This same question and issue of system stability under stress also has direct 
application to the subjective (and somewhat topical) concept of “resilience engineering”, 
where  “…resilience is the intrinsic ability of  an organization (system) to maintain or  
regain a dynamically stable state, which allows it to continue operation after a major  
mishap  and/or  the  presence  of  a  continuous  stress”(Hollnagel  et  al,  2006).  But 
“resilience”  has  not  been  actually  measured  or  quantified  anywhere:  it  is  simply  a 
desirable  property.  We  develop  here  the  numerical  and  objective  criterion  that  is 
precisely  applicable  to  the  quantification  of  “resilience”  and  organizational  stability, 
hence incidentally unifying that empirical concept with the general theory and practice 
of managing risk through learning. This criterion is also relevant to “crisis management” 
policies and procedures, and emergency response centres in major corporations, facilities 
and industries.

 In  this  paper,  derived  from  (Duffey  and  Saull,  2008),  by  a  physical  analogy,  the 
approach  links  the  emergence  of  learning  in  human  organizations  and  entities  with 
recent ideas of the emergence of order and structure from chaos in the physical sciences. 

2 ORDER AND DISORDER IN PHYSICAL AND MANAGEMENT SYSTEMS

As  eloquently  suggested  by  Ilya  Prigogine  and  his  co-workers  (Kondepudi  and 
Prigogine,  1998),  a  non-equilibrium  and  statistically  fluctuating  system  can  evolve 
towards an ordered state. Paradoxically, the fluctuations at the unobserved microscopic 
atomic and molecular level that characterize the non-equilibrium themselves provide the 
necessary opportunity for structure and order to emerge as distributions at the observed 
macroscopic level. Non-equilibrium entropy characterizes the creation of structure from 
disorder in HTS as well as for the purely physical and chemical  systems discussed in 
Prigogine’s work. We assert the analogy between these two apparently vastly different 
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fields, namely physico-chemical and homo-technological systems. 

In our technological world we have the same randomness and disorder that must exist 
for order to appear and for learning patterns to occur. Managers, executives, employees, 
procedures,  training  and  individual  skill  acquisition  intend  to achieve  the creation  of 
order in any HTS or corporate organization from the natural disorder. The system learns 
how to behave and learn macroscopically (externally and organizationally), when in fact 
it is a collection of a myriad of microscopic (internally and individually) fluctuating and 
unpredictable  interactions  (e.g.,  in  discussions,  meetings,  rules,  procedures, 
communications, training, one-on-ones, coffee breaks, lunch groups, hallway gatherings, 
rumour  mills….).  In  practice  in  the  “real”  world,  such  multitudinous  random  and 
informal learning opportunities exist in addition to the purely formal and official ones. 

We have already shown that the objective measure of uncertainty and hence of risk, is 
also a measure of the degree of order or learning,  being the information (or learning) 
entropy, H (Duffey and Saull, 2008) and also determines response time during learning. 
The  Universal  Law  of  Practice  emerges.  This  H-factor  is  well  known  in  statistical 
physics,  thermodynamics  and  information  theory  as  a  measure  of  the  “missing 
information” and is called the “uncertainty function” (see e.g. W. Greiner et al, 1997). It 
has some key properties, namely: “as a fundamental measure of the predictability of a 
random event, which also enables intercomparison between different kinds of events”. 
This property is exactly what we would require to assess effectiveness in reducing and 
managing outcomes. 

In addition, the H-factor has the useful and necessary property of a uniform prior being 
the largest uncertainty, as we would expect, and also satisfies the condition of additive 
probabilities  for  independent  events.  Its  obvious  application  to  safety  management 
measurement is however totally new as presented here, and arises quite naturally from 
the need for management to create order from disorder. In terms of probabilities based 
on the frequency of error state occupation, ni  = pi Nj, we have the classic result for the 
Information Entropy:

Hj = - Σ pi ln pi

and the maximum value occurs for a uniform distribution of outcomes. Interestingly, this 
is  also  equivalent  to  the  Bayes-Laplace  result,  when  the  posterior  probability, 
p(P) ~ 1/N,  for  a  uniform  risk.  The  occupancy  number  as  a  function  of  depth  of 
experience, εi gives the corresponding probability distribution:

pi = p0 exp(α - βεi), where α and β are constants. 

Summing  the  probabilities  over  all  the  j  observation  ranges,  Σj pi =  1,  which 
normalization says simply that whatever happens outcomes must occur. The risk always 
exists, somewhere in observational space. 

In practice, the probability of distribution on occupation is approximated by a fit to all 
the available outcome data given by (see Duffey and Saull, 2008):

pi = p0 exp – aN*, 

where, a, is a constant, and N*, the non-dimensional measure of the depth of experience, 
ε/εM. 
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Hence  the  probability  decreases  as  the  learning  rate  and  experience  depth  increases. 
Since the outcomes are represented by a continuous random variable learning curve, the 
information entropy in any jth observation interval is also given by the integral (Duffey & 
Saull, 2008): 

Hj = - ∫pi ln pi dp

= pi
2 (1/4 - ½ ln pi)

So, substituting in the expression for the information entropy, H, which we term the “H-
factor”:

Hj = ½ {p0 e-aN*}2{aN* + ½)

where,  on a  relative basis,  p0  = 1, and then H → 0.25 as experience  decreases.  This 
parameter, Hj, is an objective measure of the uncertainty, and hence of the risk for any 
system. 

As either the learning rate or depth of experience increases (N*  ↑or a↑), or the zeroth 
order occupancy decreases (p0 ↓), so does the value of the H-factor decline, meaning a 
more  uniform  distribution  and  increased  order.  The  range  chosen  varies  around  the 
“best”  value of a = 3.5, which is as derived in (Duffey and Saull,  2008) from aircraft 
near-miss and auto death data. The relative value of the information entropy H-factor at 
any experience  depth is a direct  measure of the aspect  of modern technologies called 
“organizational learning”. This terminology is meant to describe the attributes of a HTS, 
and its ability to respond effectively to the demands for continuous improvement  and 
response,  as reflected in internal  organizational  and communication aspects,  just as it 
would in a crisis. 

3 THE STABILITY CRITERION

The  stability  condition  adopted  for  molecular  systems  simply  represents  how  they 
respond  dynamically  to  thermodynamic  entropy  changes.  Thus,  for  stability  the 
incremental  change in the thermodynamic  entropy,  dS, must  be negative  (Kondepudi 
and Prigogine, 1998), so in any time increment:

dS/dt ≤ 0

Now, we have the Information Entropy, not the thermodynamic entropy, but both are a 
measure of the system disorder.  We define our equivalent  organizational  risk stability 
criterion  (ORSC)  from the  fact  that  the  incremental  change  in  risk,  as  measured  by 
changes in the information entropy, H, with changes in probability must reduce. In any 
experience increment we must have:

dH/dp ≤ 0

where, 

dH/dp = - p ln p 

There  is  a  parallel  requirement  for  convergence  in  iterative  computational  learning 
machines,  which  is  termed  “empirical  risk  minimization”.  A necessary  condition  for 
convergence is for the equivalent computational entropy measure to vanish in the limit 
of many observations or samples, meaning as n → ∞ (Vlapnik, 2000). So the equivalent 
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numerical convergence theorem or requirement is such that:

Limn→∞ (H/n) = 0

We postulate that this requirement is equivalent and analogous to Prigogine’s approach 
for  physical  and  chemical  systems,  being  an  incremental  stability  condition  for  any 
system (i.e., where order is emerging from chaos). For incremental changes, and since 
p = n/N, assuming a sufficient numbers of outcomes,

dH/dp → 0, as n → ∞

From  (Duffey  and  Saull,  2008)  in  any  observation  interval  for  any  and  all  homo-
technological  systems,  the  outcome  probability  distribution  varies  with  depth  of 
experience nearly as, 

p ≈ p0 e- βε

Since by definition dH/dp = - p ln p, then,

dH/dp = p0 e- βε (βε - ln p0)  

where, as usual, the probability, p0 = n0/Nj, is the  ratio of relative irreducible zeroth error 
state number to the total observed, and β, is the learning shape parameter. We assert that 
for any observed HTS to be stable the necessary stability condition (ORSC) is given by 
evaluating the condition for convergence.  The above stability inequality requires that:

βε - ln p0 → 0

Physically,  we can say that  the ratio of  error  reduction by learning  to the number of 
irreducible errors,  at any moment  of experience,  must  be such that  for large outcome 
numbers, n, simply:

{βε/ln p0} ≤ 1 

Applying this stability condition to “resilience” further,  we examine the limits of rare 
and  unexpected  events,  which  are  particularly  challenging  from  the  management 
perspective. 

4 RARE AND UNEXPECTED EVENTS

Major events, like the 9/11 terrorist attacks in New York (Giuliani & Kurson, 2002), or 
the Texas City refinery explosion (BP, 2005 and U.S. CSB, 2007), are unexpected and 
hopefully rare in their occurrence. They threaten and disrupt normality and how well the 
consequences as well as the event itself are managed are the measure of past and present 
learning. For the first or rare event n~1, since it has hopefully not been observed before 
and the posterior probability p(P) may be approximated by the pdf, f(ε), where for rare 
events, f(ε) ≡ n/ε, where n = 1. We assume that the zeroth and irreducible probability, p0 

~ (1/ ε), at whatever experience it was observed and the stability condition becomes:

dH/dp = e- βε (βε - ln (1/ε))/ε

Hence for convergence, the ORSC becomes, {βε/ln (1/ ε)} ≤ 1

Expanding the logarithmic term for the relevant case of small experience when, 0<ε ≤2, 
and retaining the first term only, experience being small, the stability condition is

βε  (1- ε +….) ≤ 1
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or, very approximately, when  we have little experience  and ε << 1, 

β  ≤ 1/ε

Thus physically and organizationally, the required learning rate constant should be such 
that  very  nearly,  β  ≤  1/ε,  in  order  to  maintain  at  least  a  constant  level  of  risk,  or 
resilience  against  risk  of  “organizational”  collapse.  So  for  a  “stable”  resilient  
organization, naturally the risk variation with learning must remain at or below what it  
was at the very beginning. This is not surprising: indeed it is to be expected, and requires 
vigilance, attention, learning, management, commitment and measurement of the prior 
trends.

5 ORGANIZATIONAL RISK STABILITY

This  new stability  ratio  (βε/ln  p0) is called the Organizational  Risk Stability  Number 
(ORSN), also incidentally representing the quantification of  “resilience”. For stability 
and/or convergence the ORSN must have a value that is less than unity. 

To demonstrate the principle, we use real data for a simple and well-defined data set, in 
this particular case for coal mining fatalities. The variation of the number of fatalities, F, 
with depth of experience (accumulated millions of tons mined, Mt) was used to provide 
the working estimate for the learning exponent, β; and the value for p0 was calculated to 
be ~ 0.046 from the numbers of fatalities. Figure 1 shows the resulting ORSC below the 
plot of the instantaneous rate, IR. It can be seen clearly that the estimated value of {βε/ln 
p0} ≤ 1 always, and is stable for this purely illustrative example.

 

Stability Criterion
(US Coal Mining 1931-1998)
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Fig. 1. Example stability criterion calculation

6 CONCLUSIONS: QUANTIFYING RISK AND RESILIENCE

Our major objective is to provide both quantification and prediction of risk, which also 
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means  turning  qualitative  concepts  such  as  “safety  culture”,  “safety  management 
system” and “resilience” into actually measurable and manageable trends and quantities. 

The quantification  of the degree of order  in a system, and hence  the effectiveness  of 
management,  learning and skill acquisition,  is the information entropy, a fundamental 
quantity in the physical and human world. By analogy between stability in physical and 
mathematical  learning  systems,  we derived a new criterion (the ORSC) that  uniquely 
determines  the (organizational)  stability  for any  system.  This  then also quantifies  the 
desirable  ability  of  any  system  to  respond  to  crisis,  stress  or  unexpected  events, 
including rare events. 

For  the  case  of   “engineering  resilience”  the  stability  condition  is  derived  from  the 
necessary  condition  for  the  existence  of  increasing  order.  Self-evidently,  stability 
requires that organizational learning be such as to maintain a constant or reducing risk or 
outcome  probability.  Hence,  we  have  illustrated  the  obvious  importance  of  learning 
influences  on effective  emergency  preparedness  and  management  response.  We have 
formally shown the same requirement also holds for rare and/or unknown events. The 
concept of “resilience” is entirely synonymous with the presence and pursuit of learning, 
demonstrated in and by the entire system.
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