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Abstract 

We posit that our our models of systems resilience persistently demonstrate incomplete and fragmented 

knowledge bacause we fail to fully perceive the complexity of our systems and the collective stress situations 

(CSS) that perturb it. We argue for a framework to build a web of knowledge, or WeKnow, that embodies 

complexity absorption (integrated view of the laws of requite variety, knowledge, and complexity) and 

integrates data-centric, specialized and perceptual intelligence. WeKnow is aimed to provide a more holistic 

understanding of system structure, interaction behaviors, context, temporal and perceptual boundaries, 

emerging irregularities or inaccuracies, as well as proven or plausible alternative system resilience strategies. 

Ultimately, WeKnow is aimed to provide the capability to sense and shape impending, emerging, or ensuing 

CSS. 

1 MOTIVATION 

Despite the significant advances in science and technology, human and economic losses due to disasters, 

terrorist attacks, pandemics, social upheavals, and humanitarian crises remain significant. These situations, 

which can be referred to as collective stress situations (CSS), occur when due to internal or external shocks the 

system critically fails to provide the expected conditions of life to its components [Gillespie, 1988]. We believe 

that losses remain significant because we have yet to fully perceive the complexity of our systems and the CSS 

that perturb it. Their nature are indeed complex - nonlinear, spanning multiple simultaneous temporal and 

spatial scales, and with large interrelations and interdependencies among parts. Their evolving nature can 

affect physical, ecological, economic, and social dimensions simultaneously [Carpenter at al., 2009].  

Our failure to fully perceive their complexity is because we tend to wrap our minds around the computable 

even though we are fully cognizant of the non-computable aspects of complex problems [Carpenter et al., 

2009; Fowler & Fischer, 2010]. Another reason is that we heavily rely on the narrow, segregated, domain-

dependent, and incomplete views of dominant experts rather than solving complex problems by engaging 

diverse perceptions [Carpenter et al., 2009]. Furthermore, we get intimidated in finding the critical links that 

mesh our human, environmental, social and technological systems into a cohesive and coherent whole. As a 

result, our models of systems resilience persistently demonstrate partial and fragmented knowledge. 

Our proposed solution is a web of knowledge, or WeKnow, that embodies complexity absorption to account 

for the noncomputables and uncertainties associated with complexity. WeKnow is an integration of 

heterogeneous intelligence aimed to provide a more holistic understanding of system structure, interaction 

behaviors, context, temporal and perceptual boundaries, emerging irregularities or inaccuracies, as well as 

proven or plausible alternative system resilience strategies. Ultimately, WeKnow is aimed to provide the 

capability to sense and shape impending, emerging, on-going, or ensuing CSS. Sensing is the prelude to shaping 

that involves prediction, situation analysis and awareness, anticipation, as well as providing actionable 

information [Robertson & Olson, 2013]. Shaping is influencing and changing the course of CSS and the way the 

system responds adaptively.  

2 LAWS OF REQUISITES AND THE THEORY OF COMPLEXITY ABSORPTION 

Carpenter et al. [2009] suggest that to account for uncertainties, we must consider a wide variety of sources of 

knowledge, stimulate a diversity of models, and manage for the emergence of new syntheses that reorganize 



2 

fragmentary knowledge. We further precise this by embodying in WeKNow three essential laws of requisites: 

a. Law of Requisite Variety. By having diverse response and action mechanisms available to the system, the 

system is able to compensate a larger variety of perturbations [Ashby, 1958]. Richardson and Cilliers 

[2001] explained that the need for multiple approaches is to achieve a relative goodness of fit, i.e., since 

knowledge can only be partial and fragmented, pluralism offers a venue to obtain the best possible 

elucidation of phenomena present in a given set of circumstances. 

b. Law of Requisite Knowledge. Managing a perturbation is not only dependent on a requisite variety of 

actions in the system, the system must also know which action to select, and how, in response to the 

perturbation present [Heylighen, 1992]. Otherwise, the system would have to try out actions blindly and 

therefore compromise its survival. 

c. Law of Requisite Complexity. The complexity of the system must be commensurate to the complexity of 

the environment in which it is embedded in order to function effectively [Boisot, 2003]. Casti [2012] 

theorizes that a system collapses due to the widening complexity gap between itself and its environment. 

To achieve requisite complexity requires complex adaptive systems capability of knowledge capture, 

creation and refinement [Gilpin & Murphy, 2008]. 

From the above, we can see that the laws are connected in that the first is incorporated in the second and the 

third incorporates both of the previous. We can also view this integration in terms of the theory of complexity 

absorption as explained by Gilpin & Murphy [2008]: In the multiplicity of options and diverse representations, 

albeit possibly conflicting, there is the ability to adapt and self-organize, as novel knowledge is obtained, or 

generated in order to modify an existing goal or adopt a new goal. Achieving complexity absorption (an 

integration of the three laws) leads to overcoming the partial and fragmented knowledge problem. 

3 WeKnow FRAMEWORK 

We now elucidate our framework for constructing WeKNow that embodies complexity absorption. Our 

framework involves multiple levels and dimensions that start with acquiring heterogeneous data from multiple 

sources that need to be fused and translated into the knowledge that will characterize a complex system 

capable of sensing and shaping CSS. We start with how knowledge is formed, and then what knowledge is 

derived and concluded from evidence using automated reasoning (i.e., inferred), and to what end. 

 

 

Figure 1. WeKNow framework 

3.1 WeKnow HOW? 

We are surrounded by information of incomprehensible and unimaginable amount. Information related to 

humans, enterprises, environments, and technologies, and their interactions are often reported from a 

multiplicity of sources, each varying in representation, granularity, objective and scope. Our human mind can 
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only take in, let alone piece together, a portion of these vast amount of information usually on a need-to-know 

basis. However, with our advanced technological systems, we can do significantly much more, i.e., even to 

derive previously unknown meaningful information (knowledge) from raw data. Our framework espouses a 

socio-technical complex system with a three-pronged approach to deriving knowledge. Although numerous 

frameworks have the first aspect [Mitchell, 2012][Hall & Jordan, 2010][Mitchell, 2010][Liggins et al., 2009][Roy, 

2001], they do not include the other two aspects of our framework.  

3.1.1 Data-centric Generalization – A bottom-up approach 

This universe is ever expanding as millions of data points are created every second form various sources. The 

Web is an open world and quintessential platform for us to share and receive information of various kinds. Our 

mobile devices have powerful sensing and computing capabilities that allow us to log our daily activities, do 

web searches and online transactions, and interact on social media platforms and micro-blogging sites, among 

others. Ubiquitous and interacting ambient sensors [Bohn et al., 2005; Poslad, 2009] can gather large volumes 

of human (e.g., mass movements, traffic patterns) and environmental (e.g., climate and weather changes, 

changing landscapes and their topographies, light and CO2 emissions) data. There are massively multiplayer 

online games (MMOGs) that have become unprecedented tools to create theories and models of individual 

and group social and behavioral dynamics [Shim et al., 2011]. There are data that the public sector produces, 

which include geographical information, statistics, environmental data, power and energy grids, health and 

education, water and sanitation, and transport. There are the systematically acquired and recorded census 

data about households and the services (e.g., health and medical, education, water, grabage/waste disposal, 

electricity, evacuation, and daily living-related programs) made avaible to them. Enterprises (corporations, 

small businesses, non-profit institutions, government bodies, and possibly all kinds of organizations) may 

collect billions of real-time data points about products, resources, services, and their stakeholders, which can 

be insightful on collective perceptions and behaviours and resource and service utilizations. And lastly, there is 

the Internet of Things (IoT) that extends internet connectivity beyond desktop and mobile computers to a 

diverse range of devices that communicate and interact with the external environment - all via the Internet. 

Data acquired from various sources tend to be heterogeneous in terms of their spatial and temporal aspects, 

data collection modalities, structure type (structured, semi-structured or unstructured), data type (hard 

physical data vs. soft data), and in sensor outputs with different resolutions and sampling rates. This data-

centric approach should therefore consist of techniques and algorithms to preprocess the data to prepare 

them for the subsequent processes. The result of preprocessing will be a single concatenated feature vector 

that represents the set of features of the entities of interest (EoI), which can be objects or events that are 

endogenous or exogenous to the system. This is certainly a non-trivial task. If the varied data are 

commensurate, then raw signal data can be easily combined (e.g., using Kalman filtering). Otherwise, 

extracting a common feature vector may involve further data transformation, such as filtering out noises and 

outliers, data alignment (remove any positional or sensing geometry and timing effects from the various data), 

common referencing (obtain a common spatio-temporal reference), and data association (determine which 

object is associated to which event) [Roy, 2001]. Metadata may also be generated to describe the 

heterogeneous data [Hall & Jordan, 2010]. 

After the EoI vector is extracted, general models of the EoI should then be constructed. This is basically the 

kind of problem being addressed by data mining, machine learning, artificial intelligence, pattern recognition, 

time-series analyses, and many other methods.  

3.1.2 Specialization – A top-down approach 

Carpenter et al. [2009] suggest that the tendency to ignore the noncomputable aspects can be countered by 

considering a wide range of perspectives and encouraging transparency with regard to conflicting viewpoints. 

Our society puts more value in the dominant models, i.e., the ones we consider best practices because they 

are prescribed by experts, albeit there are evidences where the perceptions of “non-experts” (only because 

they lack formal education) but experience-filled individuals led to breakthroughs. Carpenter et al. [2009], for 

example, noted several cases: crucial information provided by village hunters and loggers prompted new 

approaches that saved the giant jumping rat in Madagascar from their sudden demise, and opinions and 

knowledge of indigenous fishermen saved endangered bumphead parrotfish.  

Complex problems may have many solutions which may differ in the required execution to obtain the quality 

of the desired outcome [Carpenter et al., 2009]. Hence, a diverse team of experienced individuals is more 

suited than a team of expert solvers [Page, 2007]. Knowledge engineering approaches can be used to build and 

maintain knowledge-based systems that capture relevant contributions based on expertise and experience. 
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3.1.3 Perceptualization – A side-to-side approach 

We use the term perception to refer to the process in which we actively and purposefully acquire, organize, 

and interpret the sensory information we receive in order to make sense of our environment and situation, as 

well as achieve environmental cognition, i.e., we structured our thinking on environmental circumstances and 

conditions (citations in [Legaspi et al., 2014]). The knowledge that are obtained in this approach are from 

individuals who are (i) physically on the ground, i.e., directly experiencing CSS, such as the members of the 

affected community, local government, law enforcers, first responders, and disaster managers, and (ii) virtually 

on it, i.e., are not in the affected area but have a good view of the CSS over the internet and in social media.   

Here, social computing platforms, natural language processing, knowledge and ontology engineering, pattern 

recognition, and visualization can be used to gather, preprocess and organize the data, and infer perceptual 

knowledge that can function as feedback for situation analysis, awareness, and validation. However, at the 

other side of the framework, WeKnow’s perceptual knowledge, i.e., information as perceived by WeKNow 

after it has integrated all knowledge, should be sent to the same individuals as actionable information for 

decision-making and response (hence, side-to-side). Here, the cognitive affordances of visual models can 

support the second perceptualization process. i.e., visualization can explicitly show the unified diverse 

knowledge in WeKnow. 

3.1.4 Knowledge Integration and Incremental Learning 

Once knowledge is inferred from these varied sources, the next step is to weave together these knowledge. 

Knowledge integration will involve inferring knowledge relationships among hugely varying domains into a 

coherent structure, while revealing hidden assumptions and reconciling areas of conflicts, inconsistencies, and 

uncertainties. It should describe how domain-specific concepts are interrelated for transdisciplinary problem 

and solution formulation. It must be able to synthesize micro-level, individualized and domain-dependent 

knowledge to contextual systemic knowledge. This task is difficult and remains to be an open research area. 

Knowledge integration involves weaving the diverse knowledge into coherent networks, hence, a web of 

knowledge. Paperin et al. [2011] provide an excellent survey of previous works that demonstrated how 

complex systems are isomorphic to networks and how many complex properties emerge from network 

structure rather than from individual constituents. Representing the integrated knowledge into coherent 

networks can be accomplished by using network and dynamic graphs theories and models. 

The specialized knowledge-based systems and the stored or incoming perceptual knowledge can be used to 

guide the data-centric generalization process as background knowledge (e.g., labels of objects and events for 

supervised and semi-supervised machine learning), feedback, and for validation. At the same time, any data-

centric knowledge that was not accommodated in the other two can be used to correct or fine-tune their 

knowledge. Each can aid the others in pinpointing and correcting or clarifying malicious, erroneous, or 

conflicting information. Hence, the components of this tripartite knowledge elicitation can co-evolve together 

with increasing predictive isomorphism [McKelvey, 1999]. The inclusion of knowledge from diverse sources 

should not lead to vague generalities, but rather to become effective in completing our fragmented 

knowledge. Finally, new facts should be continuously derived and incoming evidence should be used to 

improve current knowledge repositories. Hence, WeKnow will be learned incrementally. The WeKNow 

framework, with its synergistic integration of knowledge, may enable an emergent level of increasing 

intelligence in the midst of complexity. 

To conclude this subsection, the WeKnow framework therefore achieves complexity absorption [Gilpin & 

Murphy, 2009]: more than it integrates and preserves varied technologies for triangulating for the truth, it 

continuously tracks incoming and on-going information as well as evolving circumstances and conditions, and 

aids the system to better self-organize as it generates new information, infers new knowledge, adapts with 

new functions, and transforms to new goals. The objective of the framework is to unmask the heightened 

uncertainty created by the multiple sources of knowledge in order to be resilient in a complex world. 

3.2 WeKnow WHAT? 

We need to identify the properties that can be used to describe the complexity of the system, the CSS, and 

their interaction. We believe that the Five Aspects Taxonomy [Rhodes & Ross, 2009] ensures a good coverage 

of the essential aspects of the complexity we need to be knowledgeable of. The taxonomy is conceived for the 

engineering of socio-technical systems that exhibit complexities in multiple levels (components, subsystems, 

systems, and linked systems of systems) and dimensions (aspects).  

The five aspects include: (a) structural - elaborate hierarchical/layered network arrangement of the 
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components of the system, demonstrating couplings, interrelationships and interdependencies in multiple 

scales; (b) behavioral - variances in system responses to different stimuli; (c) contextual - environmental 

circumstances in which the system exists; (d) temporal - various system properties, dimensions and needs may 

change over time together with the dynamic environment in which it exists; and (e) perceptual - stakeholder 

perceptions of the system and its environment, which may change with context shifts and cognitive constraints 

and biases. 

3.3 WeKnow TO WHAT END? 

Given that WeKNow contains the connected and evolving knowledge derived from various sources about 

system and CSS structure, behaviour and context, and how they are perceived, to be changing over time, what 

then can we use the knowledge for? Again, for sensing and shaping of the EoI, which are most certainly the 

system failure and CSS that can threaten the existence of the system and its components. 

Sensing can be achieved in a number of ways. By mining WeKnow, descriptive analysis can explain what has 

already happened and why it happened - after the fact or in real-time, and predictive analysis can forecast 

possible future outcomes across various scenarios or situations [Ernst & Young, 2014]. Second, after mining 

WeKNow for structures, behaviors, contexts and perceptions that are considered normal, routinary and 

expected, anomaly detection techniques can then be used to detect what is out of the normal, which can 

include proxy indicators or digital smoke signals of upcoming changes [Robertson & Olson, 2013]. 

Furthermore, while it is possible that conflicting information are received due to cognitive biases, perceptual 

errors, or communication differences, with various information coming from multiple angles, however, it is 

possible to perform multi-dimensional corrections and validations that can eliminate the false positives. 

Finally, there is potential for unsaid analytics, a term we introduce here to refer to inferring knowledge that 

was not explicitly stated because it depicts intuition, common sense, wisdom, and culture-based assumptions - 

those that are hard to quantify and measure but have proved essential to identifying anomalies and 

vulnerabilities. 

The primary focus, however, is still is to provide actionable strategies that will convert sensing to shaping to 

avoid the worst consequences of CSS. Shaping via WeKnow can be achieved by prescriptive analysis to identify 

which decision and response will lead to the optimal or most effective result against a specific set of objectives 

and constraints [Ernst & Young, 2014]. Second, with knowledge about system interrelations and 

interdependencies, it is possible to implement creative chaos, i.e., to provoke sufficient perturbation to 

navigate the system into the portal of change. It is more efficient and effective to create situations that can 

force latent problems to surface than design the system to not fail, which, paradoxically, only makes it less 

resilient. By intriducing chaos into the system, not only do we make the system adaptive to failures, but we 

also let opportunities for innovation to surface since chaos would break tight couplings only to give way to new 

and previously unknown effective connections. Incidentally, the Five Aspect Taxonomy is claimed to be a basic 

frame to comprehend facets of innovation strategeis and communicate emeging technologies [Rhodes and 

Ross, 2009]. Third, we can use WeKnow to infer a lever point [Holland, 2005], i.e., the critical place within the 

system where applying a little change can make a big difference and a small shift a big change, and at that 

point the behaviour of the complex system changes fundamentally. We can also infer theories of system 

boundary, openness and modularity and their trade-offs [Carpenter et al., 2012]. Modularity can help contain 

ensuing CSS by compartmentalizing. However, too much compartmentalization can prevent aid from moving in 

and out of the system from various sources. Also, too much openness can casue harmful shocks to be 

transmitted or cascaded. Lastly, WeKnow can be used to provide real-time mapping of the events and 

feedback loops occurring during CSS. The ability to monitor the behaviours of human, environmental, social 

and technological systems in real time during CSS make it possible to understand where models, plans and 

policies are failing and to make adaptations. 

3 CONCLUSION 

On a complex systems point of view, we argued that the fundamental difficulty in managing resilience is the 

complexity that characterizes our system and the collective stress situations that result from perturbations. On 

an engineering point of view, we argued for managing resilience with an integrated knowledge of this 

complexity, which is automatically inferred from gathered, extracted, and structured heterogeneous 

intelligence about the nature and contextual interaction behaviours of our systems. With state-of-the-art 

technologies this integrated knowledge may learn incrementally and autocomplete itself. On a resilience point 

of view, we argue that with a holistic understanding of systems behaviour we can experience a paradigm shift 

in the way we view their vulnerability or resilience, hence, proactive. By sensing and shaping CSS, our systems 
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become more adaptive. With this greater capacity to sense and shape, the system can better meet head-on 

the so-called unknown unknowns or uncertain uncertainties. 
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